Search results for " Copolymer"

showing 10 items of 160 documents

Small angle scattering study of poly(methylmethacrylate)-block-poly(ethylene oxide) block co-polymer in aqueous solution

2005

A combined Small Angle X ray (SAXS) and Neutron (SANS) Scattering study of aqueous solutions of a symmetric block copolymer consisting of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) moieties is presented. The polymer forms slightly polydisperse spherical micelles in a wide range of concentration (0.03 – 6.7 w/V) and temperature (20°C ≤ T ≤ 65°C). A good description of the SANS data is obtained using a polydisperse core-shell model with a structure factor for a modified hard sphere potential. By increasing the concentration at constant T we observed a decrease of the aggregation number and an increase of solvation of PEO groups in the shell, opposite to what happens by in…

Small Angle Scattering Di-Block Copolymer Micelles Structuretechnology industry and agriculture
researchProduct

Preparation of Polymer-Supported Polyazamacrocycles. The Role of the Polymeric Matrix in the Preparation of Polymer-Supported Polyazamacrocycles

2000

Different approaches have been studied for the preparation of resins containing different polyazamacrocycles. Preparation of monolithic resins by polymerization of vinylic derivatives of the corresponding macrocycles is shown to be a more versatile strategy for this purpose. The use of energy-dispersive analysis by X-ray has revealed to be a very useful tool for the rapid evaluation of the interaction of those materials with both anions and cations and has allowed the corresponding selectivity trends to be obtained in a fast and simple way. Important effects of the polymeric matrix are observed in some cases.

Methacrylate copolymerChemistryGeneral Chemical Engineeringtechnology industry and agriculturePolymeric matrixGeneral ChemistryIndustrial and Manufacturing EngineeringIonic selectivityMetalPolymerizationvisual_artPolymer chemistryvisual_art.visual_art_mediumIon-exchange resinSelectivityPolymer supportedIndustrial & Engineering Chemistry Research
researchProduct

Controlled radical polymerization of alkyl acrylates and styrene using a half-sandwich molybdenum(III) complex containing diazadiene ligands

2003

Abstract The half-sandwich molybdenum(III) complex CpMoCl 2 ( i Pr 2 -dad) ( i Pr 2 -dad= i Pr–NCH–CHN– i Pr) proved to be an effective metal catalyst for the controlled radical polymerization of methyl acrylate, butyl acrylate, and styrene. In conjunction with an alkyl iodide [R–I: CH 3 CH(COOEt)I] as an initiator and in the presence or absence of Al(O– i -Pr) 3 as a co-catalyst, the molybdenum-based system gave polymers with narrow molecular weight distributions. The in situ addition of styrene to a macroinitiator of poly(methylacrylate) afforded an AB-type block copolymer.

Nitroxide mediated radical polymerizationPolymers and PlasticsBlock copolymerButyl acrylateRadical polymerizationGeneral Physics and Astronomy010402 general chemistry01 natural sciencesStyrenechemistry.chemical_compoundPolyacrylatePolymer chemistryMaterials ChemistryCopolymer[CHIM.COOR]Chemical Sciences/Coordination chemistryMethyl acrylatePolystyreneAtom transfer radical polymerizationMolybdenum010405 organic chemistryAtom-transfer radical-polymerizationOrganic ChemistrySolution polymerization[CHIM.CATA]Chemical Sciences/Catalysis0104 chemical sciences[CHIM.POLY]Chemical Sciences/PolymerschemistryEuropean Polymer Journal
researchProduct

Nanocomposites based on clay nanoparticles and block copolymer

2008

Nanocomposite nanoparticle copolymer SANS
researchProduct

Hydrophilic/Hydrophobic Nanostripes in Lipopolymer Monolayers

2000

PolymersAir water interfaceChemistryElectronsAtomic and Molecular Physics and OpticsNanostructuresPolyethylene GlycolsChemical engineeringLiposomesAmphiphileMonolayerPhysical and Theoretical ChemistryHydrophilic hydrophobicHydrophobic and Hydrophilic InteractionsAmphiphilic copolymerChemPhysChem
researchProduct

Studies on the microstructure of ethylene/1-hexene copolymers prepared over heterogeneous Ziegler - Natta catalysts

2000

Three MgCl 2(THF) 2-supported, AlEt 2Cl-activated VOCl 3, VCl 4 and TiCl 4 Ziegler - Natta catalysts were used to copolymerize ethylene with 1-hexene in the presence of hydrogen to prepare low-M well-soluble copolymers that could be analyzed by 13C-NMR. The spectra (Fig. 1) showed resonance signals due to ethylene and 1-hexene units in positions unaffected by catalyst type and with intensities related to the degree of comonomer incorporation into the copolymer. The triad sequence distribution and comonomer reactivity ratios (r) were calculated by the Randall method [11] and Bernoulli statistics based on the known copolymer composition. The latter appeared to be the more valid in predicting …

EthyleneMaterials sciencePolymers and PlasticsbiologyGeneral Chemical EngineeringmicrostructureNattaethylene/1-hexene copolymersbiology.organism_classificationMicrostructurereactivity ciefficientsCatalysis1-Hexenechemistry.chemical_compoundchemistryMgCl2(THF)2-supported V and Ti catalystsMaterials ChemistryCopolymerOrganic chemistryPolimery
researchProduct

Block copolymers from ionic liquids for the preparation of thin carbonaceous shells

2017

This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.

polymeric ionic liquidRadical polymerizationblock copolymer02 engineering and technology010402 general chemistry01 natural sciencesFull Research Paperlcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryPolymer chemistryCopolymerReversible addition−fragmentation chain-transfer polymerizationlcsh:Scienceionic liquidchemistry.chemical_classificationRAFT polymerizationcarbonOrganic ChemistryPolymer021001 nanoscience & nanotechnologyBlock (periodic table)0104 chemical sciencesChemistryMonomerchemistryIonic liquidlcsh:Q0210 nano-technologyPyrolysisBeilstein Journal of Organic Chemistry
researchProduct

Calorimetric and Volumetric Investigations of the Effect of the Hydrophobicity of the Surfactant on the Binding between (Ethylene oxide)13-(propylene…

2004

The enthalpy and the volume of transfer (DeltaY(t)) of the unassociated (ethylene oxide)(13)-(propylene oxide)(30)-(ethylene oxide)(13) (L64) from water to the aqueous sodium alkanoate solutions as functions of the surfactant concentrations (m(S)) were determined at 298 K. The surfactants studied are sodium hexanoate, sodium heptanoate, sodium octanoate, sodium undecanoate, and sodium dodecanoate. As a general feature, for the short alkyl chain surfactants, DeltaY(t) describes an S-shaped curve in the range of m(S) analyzed whereas for the more hydrophobic surfactants the DeltaY(t) vs m(S) trends exhibit maxima which appear at ms values very close to the critical micellar concentration in w…

Polymers and PlasticsSodiumInorganic chemistryEnthalpyFLUORINATED ALCOHOLSchemistry.chemical_elementIONIC SURFACTANTSHEAT-CAPACITYTRIBLOCK COPOLYMERSInorganic Chemistrychemistry.chemical_compoundPulmonary surfactantMaterials ChemistryWATERMOLAR VOLUMESCarboxylatePropylene oxideAqueous solutionEthylene oxideOrganic ChemistrySECONDARY ALCOHOLSMICELLAR SOLUTIONSDODECYLTRIMETHYLAMMONIUM BROMIDEchemistryVolume (thermodynamics)THERMODYNAMIC PROPERTIES
researchProduct

Core-Shell Arginine-Containing Chitosan Microparticles for Enhanced Transcorneal Permeation of Drugs

2019

Chitosan oligosaccharide (C) was functionalized with L-arginine (A) and short hydrocarbon chains (C-8) to design an amphiphilic copolymer, henceforth CAC(8), leading to microparticles (MPs) consisting of an arginine-decorated hydrophilic shell and inner hydrophobic domains allowing the encapsulation of high amount hydrophobic drugs such as sorafenib tosylate (>10% w/w). L-arginine side chains were selected in order to impart the final MPs enhanced transcorneal penetration properties, thus overcoming the typical biological barriers which hamper the absorption of drugs upon topical ocular administration. The mucoadhesive properties and drug release profile of the CAC(8) MPs (CAC(8)-MPs) were …

Drug3003congenital hereditary and neonatal diseases and abnormalitiesArginineSwinemedia_common.quotation_subjectamphiphilic copolymerPharmaceutical ScienceL-arginineAdministration Ophthalmic02 engineering and technologyArginine030226 pharmacology & pharmacyCorneaChitosan03 medical and health scienceschemistry.chemical_compoundDrug Delivery Systems0302 clinical medicineMucoadhesionSide chainAnimalsskin and connective tissue diseasesProtein Kinase Inhibitorsmedia_commonMucin-3microparticlesDrug CarriersMucinnutritional and metabolic diseasesSorafenibPermeation021001 nanoscience & nanotechnologyCombinatorial chemistryBioavailabilityDrug LiberationmicroparticlechemistrySettore CHIM/09 - Farmaceutico Tecnologico Applicativoocular administrationchitosan0210 nano-technologymucoadhesion
researchProduct

Characterization and biodistribution of Au nanoparticles loaded in PLGA nanocarriers using an original encapsulation process

2021

Due to their imaging and radiosensitizing properties, ultrasmall gadolinium chelate-coated gold nanoparticles (AuNP) represent a promising approach in the diagnosis and the treatment of tumors. However, their poor pharmacokinetic profile, especially their rapid renal clearance prevents from an efficient exploitation of their potential for medical applications. The present study focuses on a strategy which resides in the encapsulation of AuNP in large polymeric NP to avoid the glomerular filtration and then to prolong the vascular residence time. An original encapsulation procedure using the polyethyleneimine (PEI) was set up to electrostatically entrap AuNP in biodegradable poly(lactic-co-g…

BiodistributionGadoliniumMetal NanoparticlesNanoparticlechemistry.chemical_elementmacromolecular substances02 engineering and technologyPolyethylene glycol01 natural sciencesPolyethylene Glycolschemistry.chemical_compoundColloid and Surface ChemistryPolylactic Acid-Polyglycolic Acid Copolymer0103 physical sciencesAnimalsTissue DistributionParticle SizePhysical and Theoretical ChemistryDrug Carriers010304 chemical physicstechnology industry and agricultureSurfaces and InterfacesGeneral Medicine021001 nanoscience & nanotechnologyRatsEncapsulation (networking)PLGAchemistryColloidal goldBiophysicsNanoparticlesGoldNanocarriers0210 nano-technologyBiotechnologyColloids and Surfaces B: Biointerfaces
researchProduct